Welcome to the                                          Musculoskeletal & Orthopedic Biomechanics Laboratory

(Website Under Development)



The Musculoskeletal & Orthopedic Biomechanics Laboratory (MOBL) was founded in 2018 within the Department of Biomedical Engineering. The labs’s biomedical engineering and orthopedic research addresses the mechanical and biomechanical factors influencing hard and soft tissue integrity and performance, as well as non-invasive tissue assessment and modeling using medical imaging. The lab implements biomechanics and imaging tools to improve predictive methods and better understand pathogenesis of musculoskeletal conditions.

The long-term goal and mission of the lab is threefold:

  1. To improve our understanding of the pathological changes in tissues due to disease or injury.
  2. To develop clinical tools to enable earlier diagnosis, prescribe effective interventions, and assess outcomes for individuals with musculoskeletal disorders.
  3. To provide education and training to the next generation of scientists.

The laboratory personnel and collaborators consists of undergraduate and graduate students, postdoctoral fellows, therapists, engineers, physicians from the Departments of Orthopedics and Radiology at UT Health, as well as basic scientists from the Department of Biomedical Engineering.


The laboratory consists of a wet lab, a dedicated space for live subject evaluations, and computational resources for modeling. The wet lab (1000 square feet) contains equipment for specimen dissection and preparation, mechanical testing, and tissue culture. A dedicated room is located within the department containing a hi-lo electric therapy treatment table and an ultrasound shear wave elastography equipment for the evaluation of human subjects.  High-end computing desktops exist within the laboratory in addition to computational facilities, including high-performance computing (HPC), equipped with software for finite element analysis, image processing, statistical analysis, and matlab.

Research Activities and Focus Areas

The Musculoskeletal & Orthopedic Biomechanics Laboratory studies and collaborates on multiple areas of research interest. An important aspect the labs’ research program is training young scientists. There’s close, day-to-day interactions between the students and the P.I. that provide guidance with research projects, manuscript and grant writing, data analysis, and presentations.

Research Projects

1. Spine Biomechanics: 

Vertebral fracture prediction: Osteoporosis is an age-related systemic skeletal disease characterized by low bone mass, decreased bone strength, architectural deterioration and a significant increase in fracture risk and bone fragility. Yet, despite the high prevalence of fractures, there is no clear prevention.

Our lab implements experimental techniques, imaging, and computational modeling (QCT/FEA) to understand bone structure, properties and failure strength. The long-term goal of the lab is to develop fracture prediction methodologies to improve the quality of life of those suffering from fragility fractures as a result of osteoporosis or metastasis to the spine.

Spine Metastasis: Under Development

2. Rotator Cuff Tears: 

Rotator cuff (RC) tears are the most common cause of shoulder pain and shoulder-related disability with a prevalence of 50 and 80% in the middle-aged and elderly populations, respectively. There are more than 4.5 million RC-related physician visits and approximately 270,000 ambulatory surgical repairs, with a return-to-work time of 7-11 months.

Our lab implements experimental techniques and imaging modalities to understand soft tissue integrity and performance. Part of our RC research is to implement novel imaging modalities, such as ultrasound shear wave elastography (SWE) and quantitative magnetic resonance imaging (qMRI) to a) develop  non-invasive techniques allowing for less invasive procedures if possible, or preparing for salvage procedures as necessary if repair is not possible or not likely to be successful; and b) allow for monitoring of the RC muscle throughout the rehabilitation process.

Future Students


Interested in joining our group!?

The Musculoskeletal & Orthopedic Biomechanics Laboratory (MOBL) provides several types of opportunities for students at the undergraduate and graduate levels, as well as postdoctoral fellows. Please visit our laboratory page to view our research projects and contact Dr. Giambini for any inquiry at hugo.giambini@utsa.edu.

Undergraduate Research

Motivated undergraduate students are invited to contact the P.I. to explore the possibility of doing research in the laboratory. Students will work either in an independent project or together with graduate students or post-doctoral fellows. This is a great opportunity to gain research experience, present at institutional seminars and at national conferences.

MS Thesis Research

Current Masters students interested in developing a thesis project in the lab should contact Dr. Giambini during the first semester of admission into the program. The applicants’ undergraduate degree must be in the engineering, biology or computer science disciplines. Prospective students should first complete the standard  graduate school application (http://aux.coe.utsa.edu/~bmeprogram/).

Ph.D Research

Prospective students interested in joining the lab as doctoral students should contact Dr. Giambini to discuss the availability of funding. Students should also complete the standard  graduate school application (http://aux.coe.utsa.edu/~bmeprogram/).  The lab is always looking for motivated and exciting individuals to join the group. Be aware that a Ph.D requires being committed to research as it will take 5 years on average to complete after a Bachelor’s degree. Preferably, the undergraduate degree should be either in mechanical or biomedical engineering; however, other disciplines will be considered.  A good understanding and working knowledge of differential equations, matrix algebra, statics, and deformable bodies is preferable. Please direct all questions and inquiries to Dr. Giambini.



Refereed Publications 39
Presentations and Non-Refereed Publications 53


39. Giambini H, Hatta T, Rezaei A, An KN. Extensibility of the supraspinatus muscle can be predicted by combining shear wave elastography and magnetic resonance imaging-measured quantitative metrics of stiffness and volumetric fat infiltration: A cadaveric study. Clin Biomech (Bristol, Avon).2018 Aug;57:144-149. doi: 10.1016/j.clinbiomech.2018.07.001. Epub 2018 Jul 3.

38. Teng Y, Giambini H, Rezaei A, Liu X, Lee Miller II A, Waletzki BE, Lu L. Poly(propylene fumarate)-Hydroxyapatite Nanocomposite can be a Suitable Candidate for Cervical Cages. J Biomech Eng. 2018 Oct 1;140(10). doi: 10.1115/1.4040458.

37. Oppenheimer M, Giambini H, Rezaei A. Lu L. The trabecular effect: a population- based longitudinal study on age and sex differences in bone mineral density and vertebral load bearing capacity. Clin Biomech (Bristol, Avon). 2018 Mar;27(55):73-78. doi: 10.1016/j.clinbiomech.2018.03.022. [Epub ahead of print]. PMID:29698852

36. Wanderman NR, Mallet C, Giambini H, Bao N, Zhao C, An KN, Freedman BA, Nassr A. An Ovariectomy-Induced Rabbit Osteoporotic Model: A New Perspective. Asian Spine J.2018 Feb;12(1):12-17. doi: 10.4184/asj.2018.12.1.12. Epub 2018 Feb 7.

35. Berton A, Salvatore G, Giambini H, Ciuffreda M, Longo UG, Denaro V, Thoreson A, An KN. A 3D finite element model of prophylactic vertebroplasty in the metastatic spine: Vertebral stability and stress distribution on adjacent vertebrae. 2018 Feb 15:1-7. doi: 10.1080/10790268.2018.1432309. [Epub ahead of print]

34. Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V, Thoreson A, An KN. Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis. BMC Musculoskelet Disord. 2018 Feb 5;19(1):38. doi: 10.1186/s12891-018-1953-6.

33. Rezaei A, Giambini H, Rossman T, Carlson KD, Yaszemski MJ, Lu L. Dragomir-Daescu D. Are DXA/aBMD and QCT/FEA stiffness and strength estimates sensitive to sex and age? Ann Biomed Eng.2017 Sep 22. doi: 10.1007/s10439-017-1914-5. [Epub ahead of print]

32. Rossman T, Uthamaraj S, Rezaei A, McEligot S, Giambini H, Jasiuk I, Yaszemski MJ, Lu L, Dragomir-Daescu D. 2016, A method to estimate cadaveric femur cortical strains during fracture testing using digital image correlation, J Vis Exp.2017 Sep 14;(127). doi: 10.3791/54942.

31. Dragomir-Daescu D, Rezaei A, Rossman T, Uthamaraj S, Entwistle R, McEligot S, Lambert V, Giambini H, Jasiuk I, Yaszemski MJ, Lu L. Method and instrumented fixture for femoral fracture testing in a sideways fall on the hip position, J Vis Exp. 2017 Aug 17;(126). doi: 10.3791/54928.

30. Hatta T, Giambini H, Itoigawa Y, Hooke AW, Sperling JW, Steinmann SP, Itoi E, An KN. Quantifying extensibility of rotator cuff muscle with tendon rupture using shear wave elastography: A cadaveric study. J Biomech. 2017 Aug 16;61:131-136. doi: 10.1016/j.jbiomech.2017.07.009. Epub 2017 Jul 21.

29. Giambini H, Hatta T, Krzysztof GR, Widholm P, Karlsson A, Leinhard O, Adkins MC, Zhao C, An K. Intramuscular fat infiltration evaluated by magnetic resonance imaging predicts the extensibility of the supraspinatus muscle. Muscle and Nerve. 2017 Apr 25. doi: 10.1002/mus.25673. [Epub ahead of print]

28. Dragomir-Daescu D, Rezaei A, Uthamaraj S, Rossman T, Bronk JT, Bolander M, Lambert V, Entwistle R, Giambini H, Jasiuk I, Yaszemski MJ, Lu L. Proximal cadaveric femur preparation for fracture strength testing and quantitative CT-based finite element analysis, J Vis Exp.2017 Mar 11;(121). doi: 10.3791/54925.

27. Liu X, Paulsen A, Giambini H, Guo J, Miller AL, Lin PC, Yaszemski MJ, Lu L. A new vertebral body replacement strategy using expandable polymeric cages, Tissue Engineering A. 2017 Mar;23(5-6):223-232. doi: 10.1089/ten.TEA.2016.0246. Epub 2016 Dec 26. PubMed PMID: 27835935; PubMed Central PMCID: PMC5346914

26. Mo J, Xu H, Qiang B, Giambini H, Kinnick R, An KN, Chen S, Luo Z. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy. Springerplus. 2016 Aug 12;5(1):1341. doi: 10.1186/s40064-016-2937-3. eCollection 2016. PubMed PMID: 27588234; PubMed Central PMCID: PMC4987745.

25. Hatta T, Giambini H, Zhao C, Sperling JW, Steinmann SP, Itoi E, An KN. Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness. PLoS One. 2016 Sep 1;11(9):e0162110. doi: 10.1371/journal.pone.0162110. eCollection 2016. PubMed PMID: 27583402.

24. Giambini H, Dragomir-Daescu D, Nassr A, Yaszemski MJ, Zhao C. Quantitative Computed Tomography Protocols Affect Material Mapping and Quantitative Computed Tomography-Based Finite-Element Analysis Predicted Stiffness. J Biomech Eng. 2016 Sep 1;138(9). doi: 10.1115/1.4034172. PubMed PMID: 27428281; PubMed Central PMCID: PMC4967881.

23. Giambini H, Fang Z, Zeng H, Camp JJ, Yaszemski MJ, Lu L. Noninvasive Failure Load Prediction of Vertebrae with Simulated Lytic Defects and Biomaterial Augmentation. Tissue Eng Part C Methods. 2016 Aug;22(8):717-24. doi: 10.1089/ten.TEC.2016.0078. Epub 2016 Jun 29. PubMed PMID: 27260559; PubMed Central PMCID: PMC4991609.

22. Hatta T, Giambini H, Hooke AW, Zhao C, Sperling JW, Steinmann SP, Yamamoto N, Itoi E, An KN. Comparison of Passive Stiffness Changes in the Supraspinatus Muscle After Double-Row and Knotless Transosseous-Equivalent Rotator Cuff Repair Techniques: A Cadaveric Study. Arthroscopy. 2016 Oct;32(10):1973-1981. doi: 10.1016/j.arthro.2016.02.024. Epub 2016 May 4.

21. Hatta T, Giambini H, Sukegawa K, Yamanaka Y, Sperling JW, Steinmann SP, Itoi E, An KN. Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty. PLoS One. 2016 May 6;11(5):e0155102. doi: 10.1371/journal.pone.0155102. eCollection 2016. PubMed PMID: 27152934; PubMed Central PMCID: PMC4859515.

20. Ellingson AM, Shaw MN, Giambini H, An KN. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2016;19(9):1009-18. doi: 10.1080/10255842.2015.1088524. Epub 2015 Sep 24. PubMed PMID: 26404463; PubMed Central PMCID: PMC4808500.

19. Giambini H, Qin X, Dragomir-Daescu D, An KN, Nassr A. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method. Med Biol Eng Comput. 2016 Apr;54(4):583-93. doi: 10.1007/s11517-015-1348-x. Epub 2015 Aug 4. PubMed PMID: 26239163; PubMed Central PMCID: PMC4852468.

18. Wang HJ, Giambini H, Hou DB, Huan SW, Liu N, Yang J, Chen C, Gao YP, Shang RG, Li YK, Zha ZG. Classification and Morphological Parameters of the Scapular Spine: Implications for Surgery. Medicine (Baltimore). 2015 Nov;94(45):e1986. doi: 10.1097/MD.0000000000001986. PubMed PMID: 26559282; PubMed Central PMCID: PMC4912276.

17. Hatta T, Giambini H, Uehara K, Okamoto S, Chen S, Sperling JW, Itoi E, An KN. Quantitative assessment of rotator cuff muscle elasticity: Reliability and feasibility of shear wave elastography. J Biomech. 2015 Nov 5;48(14):3853-8. doi: 10.1016/j.jbiomech.2015.09.038. Epub 2015 Oct 9. PubMed PMID: 26472309; PubMed Central PMCID: PMC4655159.

16. Chen X, Giambini H, Ben-Abraham E, An KN, Nassr A, Zhao C. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model. PLoS One. 2015 Oct 14;10(10):e0139384. doi: 10.1371/journal.pone.0139384. eCollection 2015. PubMed PMID: 26466092; PubMed Central PMCID: PMC4605490.

15. Giambini H, Dragomir-Daescu D, Huddleston PM, Camp JJ, An KN, Nassr A. The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation. J Biomech Eng. 2015 Nov;137(11):114502. doi: 10.1115/1.4031572. PubMed PMID: 26355694; PubMed Central PMCID: PMC4844109.

14. Eby SF, Cloud BA, Brandenburg JE, Giambini H, Song P, Chen S, LeBrasseur NK, An KN. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood. Clin Biomech (Bristol, Avon). 2015 Jan;30(1):22-7. doi: 10.1016/j.clinbiomech.2014.11.011. Epub 2014 Nov 29. PubMed PMID: 25483294; PubMed Central PMCID: PMC4298479.

13. Matsuura Y, Giambini H, Ogawa Y, Fang Z, Thoreson AR, Yaszemski MJ, Lu L, An KN. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine (Phila Pa 1976). 2014 Oct 15;39(22):E1291-6. doi: 10.1097/BRS.0000000000000540. PubMed PMID: 25077904; PubMed Central PMCID: PMC4191996.

12. Cloud BA, Zhao KD, Breighner R, Giambini H, An KN. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting. Gait Posture. 2014 Jul;40(3):369-74. doi: 10.1016/j.gaitpost.2014.05.007. Epub 2014 May 24. PubMed PMID: 24909579; PubMed Central PMCID: PMC4099294.

11. Giambini H, Salman Roghani R, Thoreson AR, Melton LJ 3rd, An KN, Gay RE. Lumbar trabecular bone mineral density distribution in patients with and without vertebral fractures: a case-control study. Eur Spine J. 2014 Jun;23(6):1346-53. doi: 10.1007/s00586-014-3205-2. Epub 2014 Jan 30. PubMed PMID: 24477380; PubMed Central PMCID: PMC4167738.

10. Fang Z, Giambini H, Zeng H, Camp JJ, Dadsetan M, Robb RA, An KN, Yaszemski MJ, Lu L. Biomechanical evaluation of an injectable and biodegradable copolymer P(PF-co-CL) in a cadaveric vertebral body defect model. Tissue Eng Part A. 2014 Mar;20(5-6):1096-102. doi: 10.1089/ten.TEA.2013.0275. Epub 2014 Jan 10. PubMed PMID: 24256208; PubMed Central PMCID: PMC3938939.

9. Giambini H, Wang HJ, Zhao C, Chen Q, Nassr A, An KN. Anterior and posterior variations in mechanical properties of human vertebrae measured by nanoindentation. J Biomech. 2013 Feb 1;46(3):456-61. doi: 10.1016/j.jbiomech.2012.11.008. Epub 2012 Nov 23. PubMed PMID: 23182219; PubMed Central PMCID: PMC3552121.

8. Giambini H, Khosla S, Nassr A, Zhao C, An KN. Longitudinal changes in lumbar bone mineral density distribution may increase the risk of wedge fractures. Clin Biomech (Bristol, Avon). 2013 Jan;28(1):10-4. doi: 10.1016/j.clinbiomech.2012.10.005. Epub 2012 Nov 8. PubMed PMID: 23142501; PubMed Central PMCID: PMC3551990.

7. Wang HJ, Giambini H, Zhang WJ, Ye GH, Zhao C, An KN, Li YK, Lan WR, Li JY, Jiang XS, Zou QL, Zhang XY, Chen C. A modified sagittal spine postural classification and its relationship to deformities and spinal mobility in a chinese osteoporotic population. PLoS One. 2012;7(6):e38560. doi: 10.1371/journal.pone.0038560. Epub 2012 Jun 5. PubMed PMID: 22693647; PubMed Central PMCID: PMC3367929.

6. Giambini H, Ikeda J, Amadio PC, An KN, Zhao C. The quadriga effect revisited: designing a “safety incision” to prevent tendon repair rupture and gap formation in a canine model in vitro. J Orthop Res. 2010 Nov;28(11):1482-9. doi: 10.1002/jor.21168. PubMed PMID: 20872585; PubMed Central PMCID: PMC3591491.

5. Galvis A, Giambini H, Villasana Z, Barbieri MA. Functional determinants of ras interference 1 mutants required for their inhbitory activity on endocytosis. Exp Cell Res. 2009 Mar 10;315(5):820-35. doi: 10.1016/j.yexcr.2008.12.003. Epub 2008 Dec 16. PubMed PMID: 19118546; PubMed Central PMCID: PMC3257578.

4. Galvis A, Balmaceda V, Giambini H, Conde A, Villasana Z, Fornes MW, Barbieri MA. Inhibition of early endosome fusion by Rab5-binding defective Ras interference 1 mutants. Arch Biochem Biophys. 2009 Feb;482(1-2):83-95. doi: 10.1016/j.abb.2008.11.009. Epub 2008 Nov 14. PubMed PMID: 19032933; PubMed Central PMCID: PMC2761816.

3. Hunker CM, Kruk I, Hall J, Giambini H, Veisaga ML, Barbieri MA. Role of Rab5 in insulin receptor-mediated endocytosis and signaling. Arch Biochem Biophys. 2006 May 15;449(1-2):130-42. Epub 2006 Mar 3. PubMed PMID: 16554017.

2. Hunker CM, Giambini H, Galvis A, Hall J, Kruk I, Veisaga ML, Barbieri MA. Rin1 regulates insulin receptor signal transduction pathways. Exp Cell Res. 2006 Apr 15;312(7):1106-18. Epub 2006 Feb 2. PubMed PMID: 16457816.

1. Hunker CM, Galvis A, Kruk I, Giambini H, Veisaga ML, Barbieri MA. Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis. Biochem Biophys Res Commun. 2006 Feb 17;340(3):967-75. Epub 2006 Jan 4. PubMed PMID: 16410077.