Module 07
Dynamic State Estimation for Dynamical Systems

Ahmad F. Taha

EE 5243: Introduction to Cyber-Physical Systems

Email: ahmad.taha@utsa.edu

Webpage: http://engineering.utsa.edu/~taha/index.html

October 19, 2015
Module 07 Outline

In this module, we will:

1. Introduce dynamic state estimation (DSE)
2. Discuss classes of observers/estimators + Applications
4. Deterministic observers
5. Unknown input observers for linear & nonlinear systems
6. Examples
What is *dynamic state estimation* (DSE)?

- Accurately depicting what’s happening inside a system

Precisely: estimating internal system states

- In circuits: *voltages and currents*
- Water networks: *amount of water flowing*
- Chemical plants: *concentrations*
- Robots and UAVs: *location & speed*
- Humans: *temperature, blood pressure, glucose level*

So how does having estimates help me?

- Well, if you have estimates, you can do control
- And if you do good control, you become better off!

In power systems: DSE can tell me what’s happening to generators & lines

⇒ Preventing/Predicting Blackouts!
Observers vs. State Estimators — What’s the Difference?

- Dynamic observer: dynamical system that *observes* the internal system state, given a set of input & output measurements
- State estimator: estimates the system’s states under different assumptions
- Estimators: utilized for state estimation and parametric identification
- Observers: used for deterministic systems, Estimators: for stochastic dynamical systems
- If statistical information on process and measurement is available, stochastic estimators can be utilized
- This assumption is strict for many dynamical systems
- Quantifying distributions of measurement and process noise is very challenging
Current DSE Methods — Stochastic Estimators

- Stochastic estimators:
 - Extended Kalman Filter (EKF)
 - Unscented Kalman filter (UKF)
 - Square-root Unscented Kalman filter (SRUKF)
 - Cubature Kalman Filter (CKF)

 * Stochastic estimators used if distributions of measurement & process noise are available

- System dynamics:

 \[
 x_k = f(x_{k-1}, u_{k-1}) + w_{k-1}
 \]

 \[
 y_k = h(x_k, u_k) + v_k
 \]

 - \(w_{k-1} \sim N(0, Q_{k-1}) \) and \(v_k \sim N(0, R_k) \): process & measurement noise
 - \(Q_{k-1} \) and \(R_k \): covariance of \(q_{k-1} \) & \(r_k \)
Most stochastic estimators have two main steps: predictions & updates

EKF (CLKF+Nonlinearities) algorithm:

(1) Prediction:

State estimate prediction: \(\hat{x}_{k|k-1} = f(\hat{x}_{k-1|k-1}, u_{k-1}) \)

Predicted covariance estimate: \(P_{k|k-1} = F_{k-1} P_{k-1|k-1} F_{k-1}^\top + Q_{k-1} \)

(2) Update:

Innovation or measurement residual: \(\tilde{y}_k = z_k - h(\hat{x}_{k|k-1}) \)

Innovation (or residual) covariance: \(S_k = H_k P_{k|k-1} H_k^\top + R_k \)

Near-optimal Kalman gain: \(K_k = P_{k|k-1} H_k^\top S_k^{-1} \)

Updated covariance estimate: \(P_{k|k} = (I - K_k H_k) P_{k|k-1} \)

Updated state estimate: \(\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \tilde{y}_k \)

\(F_{k-1} = \frac{\partial f}{\partial x} \bigg|_{\hat{x}_{k-1|k-1}, u_{k-1}} \), \(H_k = \frac{\partial h}{\partial x} \bigg|_{\hat{x}_{k|k-1}} \)
Current DSE Methods — Deterministic Estimators (Observers)

- Deterministic observers for:
 - LTI systems
 - LTI systems + Unknown Inputs
 - LTI systems + Unknown Inputs + Measurement Noise / Attack Vectors
 - Nonlinear systems (bounded nonlinearity)
 - Nonlinear systems + Unknown Inputs
 - Nonlinear systems + Unknown Inputs + Measurement Noise / Attack Vectors
 - LTI delayed systems
 - LTI delayed systems + Unknown Inputs
 - Hybrid systems
 - ... and many more

* Deterministic estimators used if measurement and process noise distributions are not available
What are Dynamical State Observers?

- Controllers often need values for the full state-vector of the plant
- This is nearly impossible in most complex systems
- *Why?* You simply can’t put sensors everywhere, and some states are unaccessible
- Observer: a dynamical system that **estimates** the states of the system based on the plant’s *inputs* and *outputs* \(^1\)

\(^1\)Figure from the 2013 ACC Workshop on: *Robust State and Unknown Input Estimation: A Practical Guide to Design and Applications*, by Stefen Hui and Stanislaw H. Żak.
Luenberger Observer and Plant Dynamics

- **Plant Dynamics:**
 \[
 \dot{x} = Ax + Bu \\
y = Cx, \ x(0) \text{ not given}
 \]

- **Observers Dynamics:**
 \[
 \dot{\hat{x}} = A\hat{x} + Bu + L(y - \hat{y}) \leftarrow \text{Innovation} \\
 \dot{x} = A\hat{x} + Bu + LC(x - \hat{x})
 \]

- **Error dynamics \(^2\):**
 \[
 \dot{e} = \dot{x} - \hat{x} = (A - LC)(x - \hat{x}) \to 0, \text{ as } t \to \infty, \iff \lambda_i(A - LC) < 0
 \]

\(^2\) Figure from the 2013 ACC Workshop on: *Robust State and Unknown Input Estimation: A Practical Guide to Design and Applications*, by Stefen Hui and Stanislaw H. Żak.

© Ahmad F. Taha
Observer-Based Control (OBC)

- After designing an observer for an LTI system, obtain state estimates \(\hat{x}(t) \)
- What to do with \(\hat{x}(t) \)? Well, use it for control \(\Rightarrow \) Observer-Based Control!
- OBC dynamics:

\[
\begin{align*}
\dot{\hat{x}} &= A\hat{x} + \text{Innovation}(y, u) \\
u &= \text{ControlLaw}(v), \quad v = [\hat{x} \quad y \quad r]
\end{align*}
\]
Observer-Based Control — The Equations

- Closed-loop dynamics:

\[
\begin{align*}
\dot{x} &= Ax - BK \hat{x} \\
\dot{\hat{x}} &= A\hat{x} + L(y - \hat{y}) - BK \hat{x}
\end{align*}
\]

- Or

\[
\begin{bmatrix}
\dot{x} \\
\dot{\hat{x}}
\end{bmatrix} =
\begin{bmatrix}
A & -BK \\
LC & A - LC - BK
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{x}
\end{bmatrix}
\]

- Transformation:

\[
\begin{bmatrix}
x \\
e
\end{bmatrix} =
\begin{bmatrix}
x \\
x - \hat{x}
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
I & -I
\end{bmatrix}
\begin{bmatrix}
x \\
\hat{x}
\end{bmatrix}
\]

- Hence, we can write:

\[
\begin{bmatrix}
\dot{x} \\
\dot{e}
\end{bmatrix} =
\underbrace{egin{bmatrix}
A - BK & BK \\
0 & A - LC
\end{bmatrix}}_{A_{cl}}
\begin{bmatrix}
x \\
e
\end{bmatrix}
\]

- If the system is controllable & observable \(\Rightarrow\) eig\((A_{cl})\) can be arbitrarily assigned by proper \(K\) and \(L\)

- What if the system is stabilizable and detectable?
Unknown Input Observers (UIO) — Why?

- Deterministic observers work well without uncertainties
- Fail to accurately estimate the plant state under uncertainties
- **Solution?** Design of Unknown Input Observers (UIO)
- Unknown input u_2 models uncertainties, disturbances or nonlinearities
- **Main idea:** come up with a clever innovation term that nullifies that effect of unknown u_2

\[
\begin{align*}
\dot{x}_p &= A_p \hat{x}_p + \text{Innovation}(y, u_1) \\
u_1 &= \text{ControlLaw}(v), \quad v = \begin{bmatrix} \hat{x}_p & y & r \end{bmatrix}
\end{align*}
\]

- $r \rightarrow v \rightarrow u_1 = \text{ControlLaw}(v)$
- \hat{x}_p, y
- $\hat{x}_p = A_p \hat{x}_p + \text{Innovation}(y, u_1)$
- $u_1 = \text{ControlLaw}(v), \quad v = \begin{bmatrix} \hat{x}_p & y & r \end{bmatrix}$
- $\dot{x}_p = A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2$
- u_2
- y
Most Well-Known UIOs

- Different UIOs have been developed:
 - UIOs for LTI systems [Bhattacharyya, 1978]
 - Hui and Žak [Hui & Žak, 2005]
 - Sliding-mode differentiator UIO [Floquet et al., 2006]
 - Hou and Müller observer [Zhang et al., 2012]
 - Observers for Lipschitz nonlinear systems [Chen & Saif, 2006]
 - Walcott-Žak sliding mode observer [Walcott & Žak, 1987]
 - Utkin’s sliding mode observer [Utkin, 1992]

- Some observers have performance guarantees

- Most UIOs have assumptions related to the LTI SS matrices

- We will discuss some UIOs
System and UIO Dynamics — One UIO Architecture

- **Plant Dynamics:**
 \[
 \dot{x}_p = A_p x_p + B^{(1)}_p u_1 + B^{(2)}_p u_2 \\
 y = C_p x_p, \quad x_p(0) \text{ not given}
 \]

- **n states, } m_1 \text{ known inputs, } m_2 \text{ unknown inputs, } p \text{ measurable outputs}

- **UIO Dynamics:**
 \[
 \dot{x}_c = A_c x_c + B^{(1)}_c y + B^{(2)}_c u_1, \\
 \hat{x}_p = x_c + M y,
 \]

- **Error dynamics:**
 \[
 \dot{e} = \dot{x} - \dot{\hat{x}} = (I - MC_p)(A - LC_p)e
 \]

- **Objective:** Design } M, } L, } A_c, } B^{(1)}_c \text{ and } } B^{(2)}_c \text{ such that } e(t) \to 0 \text{ as } t \to \infty

- **Assumptions:**
 1. Pair \((A_p, C_p)\) is detectable
 2. \(\text{rank}(C_p B^{(2)}_p) = \text{rank}(B^{(2)}_p)\) — rank matching condition implies that there must be at least as many independent outputs as unknown inputs
 3. \(x_c(0) = (I - MC_p)v, \ v \text{ is arbitrary vector}\)
UIO Design

- We want to estimate \(x_p \)
- The presented observer assumes unknown initial plant conditions
- UIO is motivated by writing \(x_p \) as:

\[
x_p = (I - MC_p)x_p + MC_p x_p = (I - MC_p)x_p + My
\]

- **Objective**: analyze the unknown portion of \(x_p \), that is \(x_c = (I - MC_p)x_p \)
- We then have: \(\dot{x}_c = (I - MC_p)\dot{x}_p + \text{AddedConvergenceTerm} \)
- Then, obtain \(\hat{x}_p = x_c + My \)
- Design matrix parameters such that unknown input \(u_2 \) is nullified [Hui & Žak, 2005]
UIO Design — 2

- **UIO Dynamics** [Hui & Žak, 2005] (recall that \(x_p = x_c + My \)):

\[
\dot{x}_c = (I - MC_p)\dot{x}_p + \text{AddedConvergenceTerm} \\
= (I - MC_p)\left(A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2 \right) + \text{AddedConvergenceTerm} \\
= (I - MC_p)\left(A_p x_c + A_p M y + B_p^{(1)} u_1 + \underbrace{L(y - C_p x_c - C_p M y)}_{\text{AddedConvergenceTerm}} \right) \\
\dot{x}_c = A_c x_c + B_c^{(1)} y + B_c^{(2)} u_1, \\
\hat{x}_p = x_c + M y,
\]

where:

* \((I - MC_p)B_p^{(2)} = 0\)
* \(A_c = (I - MC_p)(A_p - LC_p), B_c^{(2)} = (I - MC_p)B_p^{(1)}\)
* \(B_c^{(1)} = (I - MC_p)(A_p M + L - LC_p M)\)
UIO Design Parameters

- Given $A_p, B_p^{(1)}, B_p^{(2)}, C_p$, find M, L such that $e(t) \rightarrow 0$ as $t \rightarrow \infty$

- Precisely, $M \in \mathbb{R}^{n \times p}$ is chosen such that

$$\left(I - MC_p \right) B_p^{(2)} = 0$$

- Solution:

$$M = B_p^{(2)} \left((C_p B_p^{(2)})^\dagger + H_0 \left(I_p - (C_p B_p^{(2)}) (C_p B_p^{(2)})^\dagger \right) \right)$$

- H_0 is a design matrix

- L is an added gain to improve the convergence of the estimated state (\hat{x}_p)

- **Note:** the above solution encapsulates the projection nature of MC_p: $(MC_p)^2 = MC_p$ and hence $I - MC_p$ is also a projection

- Basically, nullifying the unknown input by $(I - MC_p)$

- **Note:** This UIO design can be easily extended to reduced-order designs; read [Hui & Žak, 2005] for more
Numerical Results for the UIO

- Given a stable LTI MIMO system with 2 known, 2 unknown inputs, 4 outputs.
- Unknown inputs are all $u_2(t) = 0.5 \sin(t)$, SS matrices:

$$A_p = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & -5 & -10 & -10 & -5 \end{bmatrix}, \quad B_p^{(1)} = B_p^{(2)} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad C_p = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- UIO state estimates converge to the actual states.
Sliding Mode Observers — Introduction

- Sliding model control: nonlinear control method whose structure depends on the current state of the system
- Sliding mode observers (SMO): nonlinear observers driving state trajectories of estimation error to zero or to a bounded neighborhood
- SMOs have high resilience to measurement noise
- See [Utkin, 1992] for more on SMOs
System and SMO Dynamics — Second UIO Architecture

- **Plant Dynamics:**
 \[
 \dot{x}_p = A_p x_p + B_p^{(1)} u_1 + B_p^{(2)} u_2 \\
y = C_p x_p
 \]

 * **Assumption:** unknown input \(u_2 \) is bounded, i.e., \(\|u_2\| \leq \rho \)

- **SMO Dynamics** [[Hui & Žak, 2005]]:
 \[
 \dot{x}_p = A_p \hat{x}_p + B_p^{(1)} u_1 + L(y - \hat{y}) - B_p^{(2)} E(\hat{y}, y, \eta) \\
 \hat{y} = C_p \hat{x}_p,
 \]

- \(u_1 \) and \(y \): readily available signals for the SMO

- \(E(\cdot) \) is defined as (\(\eta \) is SMO gain):
 \[
 E(\hat{y}, y, \eta) = \begin{cases}
 \eta \frac{F(\hat{y} - y)}{\|F(\hat{y} - y)\|_2}, & \text{if } F(\hat{y} - y) \neq 0 \\
 0, & \text{if } F(\hat{y} - y) = 0.
 \end{cases}
 \]

- **SMO design objective:** find matrices \(F \) and \(L \)
SMO Design

- $F \in \mathbb{R}^{m_2 \times p}$ satisfies: $FC_p = (B_p^{(2)})^T P$

- L is chosen to guarantee the asymptotic stability of $A_p - LC_p$

- Thus, for $Q = Q^T > 0$, there is a unique $P = P^T > 0$ such that P satisfies:

 $$(A_p - LC_p)^T P + P(A_p - LC_p) = -Q, \quad P = P^T > 0$$

- $E(\cdot)$ guarantees that $e(t)$ is insensitive to the unknown input $u_2(t)$ and the estimation error converges asymptotically to zero

 * If for the chosen Q, no matrix F satisfies the above equality, another matrix Q can be chosen

 * A design algorithm (to find matrices F, L, P) is presented in [Hui & Žak, 2005]
The SMO design problem boils down to solving matrix equalities

Can we solve the matrix design problem using LMIs? Yes!

We have two (nonlinear) matrix equations in terms of P, F, L:

$$(A_p - LC_p)^\top P + P(A_p - LC_p) = -Q$$

$$P = P^\top$$

$$FC_p = (B_p^{(2)})^\top P$$

LMI trick: set $Y = PL$, rewrite above system of linear matrix equations as:

$$A_p^\top P + PA_p - C_p^\top Y^\top - YC_p = -Q$$

$$P = P^\top$$

$$FC_p = (B_p^{(2)})^\top P$$
SMO Design Using CVX

Sample CVX code:

```cvx
cvx_clear

cvx_begin sdp quiet

variable P(n, n) symmetric
variable Y(n, p)
variable F(m2, p)

minimize(0)

subject to

Ap'*P + P*Ap - Y*Cp - Cp'*Y' <= 0
F*Cp-Bp2'*P==0;
P >= 0

cvx_end

L = P\Y;
```
Numerical Example

- Linearized dynamics of a power system:

\[
A = \begin{bmatrix}
-41 & 0 & 0 & 0 \\
27.67 & -16.67 & -55.33 & 0 \\
0 & 0.01 & -0.01 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}, \quad B_1 = \begin{bmatrix}
2 \\
0 \\
0 \\
0 \\
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
2 \\
0 \\
0 \\
0 \\
\end{bmatrix}, \quad C^\top = \begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1 \\
\end{bmatrix}
\]

- Solving for \(P, L, F \) using CVX, we obtain:

\[
L = \begin{bmatrix}
-28.22 & -0.12 \\
12.23 & -39.15 \\
-0 & 5.92 \\
0.05 & 3.76 \\
\end{bmatrix}, \quad F = \begin{bmatrix}
4.89 & 0.42 \\
\end{bmatrix}, \quad P = \begin{bmatrix}
2.45 & 0 & 0 & 0.21 \\
0 & 0.19 & 0.36 & 0.36 \\
0 & 0.36 & 11.43 & -15.01 \\
0.21 & 0.36 & -15.01 & 43.62 \\
\end{bmatrix}
\]

- After simulating the observer, we obtain:

©Ahmad F. Taha
Dynamic Observers for NL Systems — Architecture # 1

- **Question**: What if system dynamics are nonlinear?
- **Answer**: Use deterministic estimators for nonlinear systems

System dynamics:

\[
\dot{x} = Ax + B_1u_1 + \phi(x, u) + B_2u_2
\]

- **Nonlinear term in the dynamics** \(\phi(x, u)\) is:
 - Globally Lipschitz (*Lipschitz Continuous*):
 \[
 \|\phi(x, u) - \phi(z, u)\| \leq L\|x - z\|, \quad L \geq 0
 \]
 - One-sided Lipschitz:
 \[
 \langle \phi(x, u) - \phi(z, u), x - z \rangle \leq k_1\|x - z\|^2
 \]
 - Quadratically inner-bounded:
 \[
 (\phi(x, u) - \phi(z, u))^\top (\phi(x, u) - \phi(z, u)) \leq k_2\|x - z\|^2 + k_3 \langle \phi(x, u) - \phi(z, u), x - z \rangle
 \]
 * Lipschitz continuity ⇒ quadratic inner-boundedness
 * Example: if \(\phi(x) = \sin(x)\), then \(L = 1\)
Finding Lipschitz Constants — Examples

- **Example 1:** if \(\phi(x) = x^2 \), what is the Lipschitz constant \(L \) if \(x \) is defined on the interval \([-2, 2]\)?

 - **Solution:** applying the definition, we have:

 \[
 \|\phi(x_2) - \phi(x_1)\| = |x_2^2 - x_1^2| = |x_2 - x_1||x_2 + x_1| \leq 4|x_2 - x_1| \Rightarrow L = 4
 \]

- **Example 2:** find \(L \) if \(\phi(x) = \begin{bmatrix} ax_1 + bx_2 \\ 1 - \cos(cx_1) \end{bmatrix} \), \(x \in \mathbb{R}^2_+ \) and \(a, b, c \in \mathbb{R}_+ \)

 - **Solution:**

 \[
 \|\phi(x) - \phi(z)\| = \left\| \begin{bmatrix} ax_1 + bx_2 \\ 1 - \cos(cx_1) \end{bmatrix} - \begin{bmatrix} az_1 + bz_2 \\ 1 - \cos(cz_1) \end{bmatrix} \right\| \\
 = \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ \cos(cz_1) - \cos(cx_1) \end{bmatrix} \right\| = \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ -2 \sin(0.5c(z_1 + x_1)) \sin(0.5c(z_1 - x_1)) \end{bmatrix} \right\| \\
 \leq \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ 2 \sin(0.5c(x_1 - z_1)) \end{bmatrix} \right\| \leq \left\| \begin{bmatrix} a(x_1 - z_1) + b(x_2 - z_2) \\ c(x_1 - z_1) \end{bmatrix} \right\| \\
 = \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \begin{bmatrix} x_1 - z_1 \\ x_2 - z_2 \end{bmatrix} \right\| = \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \right\| \|x - z\| \leq \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \right\| \|x - z\| \\
 \leq \sqrt{2} \left\| \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \right\|_\infty \|x - z\| \Rightarrow L = \sqrt{2} \max(a + b, c)
 \]
Observer Design

- **Plant dynamics under unknown inputs:**
 \[
 \dot{x} = Ax + B_1 u_1 + \phi(x, u) + B_2 u_2 \\
 y = Cx
 \]

- **Observer dynamics [Zhang et al., 2012]:**
 \[
 \dot{\hat{x}} = A\hat{x} + B_1 u_1 + \phi(\hat{x}, u) + L(y - C\hat{x})
 \]

- **Matrix-gain \(L\) determined as follows:**
 1. Given \(k_1, k_2, k_3\), solve this LMI for \(\epsilon_1, \epsilon_2, \sigma\) and \(P = P^\top \succeq 0\):
 \[
 \begin{bmatrix}
 A^\top P + PA + (\epsilon_1 k_1 + \epsilon_2 k_2)I_n - \sigma C^\top C & P + \frac{k_3 \epsilon_2 - \epsilon_1}{2} I_n \\
 \left(P + \frac{k_3 \epsilon_2 - \epsilon_1}{2} I_n\right)^\top & -\epsilon_2 I_n
 \end{bmatrix} < 0
 \]
 2. Compute observer gain \(L\):
 \[
 L = \frac{\sigma}{2} P^{-1} C^\top
 \]

- **Extension:** reduced-order DSE

- Read [Zhang et al., 2012] to understand the derivation of the above LMI
Simulation Example

- Nonlinear power system, consider Lipschitz parameters: \(\rho = \varphi = \mu = 1 \)
- Using CVX, we solve for \(P, \epsilon_1, \epsilon_2 \) and \(\sigma \):
 \[\epsilon_1 = 0.0122, \epsilon_2 = 0.0144, \sigma = 6.424, \]
- Then, the observer gain-matrix \(L \) is computed:

\[
P = \begin{bmatrix}
0.4894 & -0.017 & 0.062 & -0.46 \\
-0.01 & 0.005 & 0 & 0.006 \\
0.062 & 0 & 0.77 & 0.02 \\
-0.46 & 0.006 & 0.02 & 0.49
\end{bmatrix},
\]

\[
L = \frac{\sigma}{2} P^{-1} C^\top = \begin{bmatrix}
-6.02 & 15.93 & 31.86 & 12.04 \\
-15.74 & 42.50 & 85.02 & 31.503 \\
4.20 & 0.06 & 0.12 & -8.46 \\
-3.11 & 8.69 & 17.39 & 6.23
\end{bmatrix}
\]

- Given \(L \), plot the observer response given random estimator initial conditions:
Here, we introduce an observer design for a specific class of nonlinear systems with unknown inputs.

Observer design based on the methods presented in [Chen & Saif, 2006].

Observer design assumes:
1. B_2 is full-column rank
2. Nonlinear function is Lipschitz

The design problem is formulated as an SDP.
Observer Design for NL Systems

- System dynamics:
 \[
 \dot{x} = Ax + B_1u_1 + \phi(x) + B_2u_2 \\
y = Cx
 \]

- Proposed observer dynamics:
 \[
 \dot{z} = Nz + Gu + Ly + M\phi(\hat{x}) \\
 \hat{x} = z - Ey
 \]

* Matrices E, K, N, G, L and M are obtained from the matrix equalities that ensure the asymptotic stability of estimation error

* Lipschitz constant γ: $\|\phi(x_1) - \phi(x_2)\| \leq \gamma\|x_1 - x_2\|$

- Authors in [Chen & Saif, 2006] develop matrix equations that guarantee $e = x - \hat{x}$ converges to zero

- Can you re-derive the equations? Design matrix parameters s.t. $e \to 0$

- Read [Chen & Saif, 2006] to understand the design algorithm
Observer Design Algorithm for NL Systems

Algorithm 1 Observer with Unknown Input Design Algorithm

1: **given** parameters: A, B_1, B_2, C and γ (the Lipschitz constant)
2: **compute** matrices U, V, \bar{A} and \bar{B}_1:

\[
U = -B_2(CB_2)^\dagger \\
V = I - (CB_2)(CB_2)^\dagger \\
\bar{A} = (I + UC)A \\
\bar{B}_1 = VCA
\]

3: **find** matrices \bar{Y}, \bar{K} and a symmetric positive definite matrix P that are a solution for this LMI:

\[
\begin{bmatrix}
\Psi_{11} & \Psi_{12} \\
\Psi_{12}^\top & I_{2n}
\end{bmatrix} < 0
\]

where

\[
\Psi_{11} = \bar{A}^\top P + P\bar{A} + \bar{B}_1^\top \bar{Y}^\top \bar{Y}\bar{B}_1 - C^\top \bar{K}^\top - \bar{K}C + \gamma I,
\]

\[
\Psi_{12} = \sqrt{\gamma} \left(P(I + UC) + \bar{Y}(VC) \right)
\]

4: **obtain** matrices Y and K and the observer parameters N, G, L and M:

\[
Y = P^{-1}\bar{Y}, \quad K = P^{-1}\bar{K} \\
E = U + YV, \quad M = I + EC \\
N = MA - KC, \quad G = MB_1 \\
L = K(I + CE) - MAE
\]

5: **simulate** the UIO given the computed matrices
SMO Design Using CVX

\[
[p \ n] = \text{size}(C);\ [n \ m1] = \text{size}(B1);\ [n \ m2] = \text{size}(B2);
U = -B2*\text{pinv}(C*B2);\ V = \text{eye}(\text{length}(C*B2))-(C*B2)*\text{pinv}(C*B2);
\]

\[
\text{cvx_begin sdp quiet}
\text{variable}\ P(n,n)\ \text{symmetric}
\text{variable}\ Ybar(n,p)
\text{variable}\ Kbar(n,p)
\minimize(1)
\text{subject to}
P \geq 0;
-
[((\text{eye}(n)+U*C)*A)'*P + P*((\text{eye}(n)+U*C)*A) + \ldots
(V*C*A)’*Ybar’ + Ybar*(V*C*A) - C’*Kbar’ - Kbar*C + \ldots
\gamma*\text{eye}(\text{length}(Kbar*C)) , \sqrt{\gamma}*(P*(\text{eye}(n)+U*C)+Ybar*(V*C));
(\sqrt{\gamma}*(P*(\text{eye}(n)+U*C)+Ybar*(V*C)))’ , -\text{eye}(n)] \geq 0;
\text{cvx_end}
\]

\[
Y = \text{inv}(P)*Ybar;\ K = \text{inv}(P)*Kbar;
E = U+Y*V;\ M = \text{eye}(n)+E*C;
N = M*A-K*C;\ G = M*B1;
L = K*(\text{eye}(p)+C*E)-M*A*E;
\]
Numerical Example [Chen & Saif, 2006]

- Consider this dynamical system:

\[
A = \begin{bmatrix}
-1 & -1 & 0 \\
-1 & 0 & 0 \\
0 & -1 & -1
\end{bmatrix},
B_1 = 0, B_2 = \begin{bmatrix}
-1 \\
0 \\
0
\end{bmatrix},
C = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}^T,
\phi = \begin{bmatrix}
0.5 \sin(x_2) \\
0.6 \cos(x_3) \\
0
\end{bmatrix},
u_2 = 2 \sin(5t)
\]

- Applying the algorithm, we obtain:

\[
U = \begin{bmatrix}
-1 \\
0 \\
0
\end{bmatrix},
V = \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix},
P = \begin{bmatrix}
50.25 & 0 & 0 \\
0 & 0.89 & 0 \\
0 & 0 & 50.25
\end{bmatrix},
Y = \begin{bmatrix}
0 & 0 \\
0 & 1.3874 \\
0 & -50.25
\end{bmatrix}
\]

- Compute matrices \(K, E, M, N, G, L \) and simulate the observer.

- Converging estimates:
Comparison between DSE Techniques

<table>
<thead>
<tr>
<th>Functionality/Characteristic</th>
<th>Kalman Filter Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EKF</td>
</tr>
<tr>
<td>System’s Nonlinearities</td>
<td>×</td>
</tr>
<tr>
<td>Feasibility</td>
<td></td>
</tr>
<tr>
<td>Tolerance to Different Initial Conditions</td>
<td>×</td>
</tr>
<tr>
<td>Tolerance to Unknown Inputs</td>
<td>×</td>
</tr>
<tr>
<td>Tolerance to Cyber-Attacks</td>
<td>×</td>
</tr>
<tr>
<td>Tolerance to Process & Measurement Noise</td>
<td>✓</td>
</tr>
<tr>
<td>Guaranteed Convergence</td>
<td></td>
</tr>
<tr>
<td>Numerical Stability</td>
<td></td>
</tr>
<tr>
<td>Computational Complexity</td>
<td>$\mathcal{O}(n^3)$</td>
</tr>
</tbody>
</table>
Questions And Suggestions?

Any questions?

Thank You!

Please visit
engineering.utsa.edu/~taha

IFF you want to know more 😊

